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We report measurements of the Hall effect in 1000–4000 Å wide AlxGax−1As parabolic wells with quasi-
two-dimensional electrons and holes in a perpendicular magnetic field. Above a critical magnetic field B
�3T, the Hall resistance for wide parabolic wells is found to be enhanced when the temperature decreases. We
attribute this enhanced Hall slope to a carrier density effect. The Hartree and exchange-correlation terms
produce a strong variation of the potential-well shape. The width of the electronic and hole slabs shrinks as the
magnetic field is increased, which leads to the redistribution of the charge between the well and impurity layer.
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I. INTRODUCTION

Remotely doped parabolic quantum wells �PQWs� were
initially proposed as a system where it might be possible to
observe broken-symmetry ground states for a three-
dimensional �3D� electron system in the presence of a strong
magnetic field.1 In such PQW, the electrons are spatially
separated from the dopant atoms, and this reduces electron
impurity scattering and provides an opportunity to study a
clean interacting electron system. In addition, parabolic wells
are considered more attractive for theoreticians, because the
electrons screen the bare parabolic potential and form a con-
stant density slab, which is a good approximation to a three-
dimensional jellium, where electrons move in a constant
background positive charge density.

The discovery of the fractional quantum Hall effect dem-
onstrated the importance of the Coulomb interactions for
two-dimensional �2D� electron systems in the last Landau
level.2 Another famous example is the formation of stripe
charge-density wave �CDW� phases in high Landau levels3 at
half-integer filling factor �=N+1/2. Within the Hartree-
Fock framework, Brey4 proposed a possible exchange in-
duced charge-density wave state in a wide PQW subjected to
a perpendicular magnetic field at Landau filling factor �=1.
Recently, the magnetoplasmon excitations have been calcu-
lated in parabolic wells in a tilted magnetic field.5 Several
exotic symmetry-broken states, such as skyrmion stripe
phases, have been predicted.6 In contrast to narrow quantum
wells and heterojunctions, in wide PQW, such a phase tran-
sition has not been observed experimentally. The absence of
the CDW instability in n-type AlxGa1−xAs parabolic wells
can be attributed to the relatively low level of the electron-
electron interaction strength, a small moderate dimensionless
parameter rs value, and low mobility. The 2D holes are char-
acterized by a larger rs, usually �10, due to the heavy effec-
tive mass; however, the hole mobility is lower than for elec-
trons.

It is worth noting that some of the many-body effects in a
wide electronic slab may be robust against electron impurity
scattering. Previous numerical computations of the charge
distribution and potential-well shapes as a function of mag-
netic field demonstrated that the Hartree and exchange-

correlation terms are equally important as the bare potentials
in the Schrödinger equation.7 In particular, as the magnetic
field is increased, the width of the electron slab shrinks and
the minima of the self-consistent potential near the edges of
the electron slab are shifted to the center of the well. This
may lead to a decrease of the electron density ns in the well,
since ns is very sensitive to the well potential shape.

In this paper, we report measurements of the Hall resis-
tance in wide electronic and hole parabolic wells in a per-
pendicular magnetic field. We found that above a critical
magnetic field, the Hall slope for hole systems is strongly
enhanced in comparison with the low-field Hall coefficient.
Electronic parabolic wells with the same slab width demon-
strate normal behavior; however, the Hall slope is enhanced
for wider wells. We attribute this effect to a decrease in
charge density due to the shrinking of the slab width inside
the bare parabolic potential.

II. EXPERIMENTAL RESULTS

Taking z as the growth direction and taking z=0 the cen-
ter of parabolic well, we consider an effective harmonic po-
tential V0�z�=m�2z2 /2, with �=c�2/m�1/2 and effective
mass m, for a composition profile x�z�=cz2. The characteris-
tic bulk density is given by n+= �2m*�

4�e2 . The effective thickness
of the electronic slab can be obtained from We=ns /n+, where
ns is the two-dimensional density. For a partially filled quan-
tum well, We is smaller than the geometrical width of the
well W, and we define a filling factor at zero magnetic field
as f =We /W. Figure 1 illustrates the conduction-band profile
for an empty and a partially full parabolic well. When sev-
eral subbands become occupied, the potential profile broad-
ens and turns into the square-well profile with corresponding
square-well energy levels E0= �2��2�2 / �8mWe

2�. Note that
when one subband is occupied, the Fermi energy EF in-
creases linearly with ns, as for 2D system. However, for
parabolic wells with two or three occupied subbands, the
Fermi energy is nearly constant and does not vary with sur-
face density. This follows from the fact that the width of the
electron slab We increases with ns, so that the bulk density
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n+=ns /We remains essentially constant.8,9 For a full para-
bolic well, we have

EF = �2�3�2N+�2/3/�2mW4/3� , �1�

where N+=n+W2. It is worth noting that the 3D approxima-
tion is also valid for filling fractions f �0.2–0.3. We there-

fore use Eq. �1� for the estimation of the interaction param-
eter rs in our samples. The dimensionless interelectron
spacing in the 3D case is given by rs= 4�2m*e2

�h2 � 3
4�n+

�1/3. The
parameter rs is much larger in p-type parabolic quantum well
due to their large effective mass; therefore, many-body ef-
fects are expected to be more pronounced in three-
dimensional hole systems. From Table I, we may see that the
dimensionless parameter rs�15 for 3000 Å wide PQW with
holes �m*=0.4m0� and 3.3 for electronic 4000 Å wide well.
Realistic wells are characterized by the three parameters
shown in Fig. 1: the height �1 and the width W of the para-
bolic well and the height of the AlxGax−1As barrier �2. The
harmonic potential frequency is connected with the height of
the parabola by the simple equation �= �8�1 /mW2�1/2.

The p-type samples were grown by a molecular-beam ep-
itaxy technique on semi-insulating �311�A substrates. Several
samples were grown with a PQW width W=1000–3000 Å
and symmetrically doped with silicon located at 150 or
200 Å from their border. We observed a systematical de-
crease of the hole density in the PQW with an increase of the
width: the density went from 3.7	1011 cm−2 for W
=1000 Å sample to 1.7	1011 cm−2 for W=3000 Å quantum
well. The n-type samples were grown on semi-insulating
�100� substrates. A summary of the samples parameters is
shown in Table I. The effective thickness of the hole slab was
Wh= ps / p+�800 Å for 2000 Å PQW and Wh�500 Å for
the W=1000 Å sample. Some of the details of the crystal
growth are reported in Ref. 10. The mobility of the holes was
of the order �30–60�	103 cm2/V s at T=1.4 K and in-
creased up to 100	103 cm2/V s at T=50 mK. The measure-
ments in this study were performed using Hall bar geometry

with current flow in the �2̄33� and the �011̄� directions for
p-type structures. The samples were immersed in the mixing
chamber of a top-loading dilution refrigerator with a base
temperature T=50 mK. We measured magnetoresistance and
Hall resistance in perpendicular magnetic fields employing a

FIG. 1. �Color online� Illustration of the conduction-band edge
in an empty parabolic well and partially full PQW with W
=1000 Å and Ls=100 Å. �1 is the height of the parabolic well, �2

is the height of the AlxGax−1As barrier, Ls is the spacer width, EF is
the Fermi energy, VH is the band bending energy resulting from
electron-electron interactions, Ec is the highest occupied energy
level, Ed is the activation energy of donor impurities, Vs is the
depletion energy of the ionized charge, and Vh is the potential of the
donor layer. The dashed line �---� shows the potential without
charge, the dash-dotted line �-·-� is the potential due to electron-
electron interactions, and the total self-consistent potential is repre-
sent by a solid line �—�.

TABLE I. The sample parameters.

Sample Orientation Carrier type
Spacer

�Å�
W

�Å�
n+

�1016 cm−3�
ns

�1011 cm−2�
ns

*

�1011 cm−2� rs

Wef f

�Å�



�cm2/V s�

2384 100 Electrons 200 1000 8.8 4.6 4.33 1.53 520 170000

2384 �311�A Holes 200 1000 8.8 3.7 8.4 420 62000

2577 100 Electrons 200 1000 11.9 4.2 4.33 1.4 353 353000

2378 100 Electrons 500 1000 11.9 2.3 2.8 1.4 190 153000

2496 100 Electrons 200 1500 5.3 3.5 3.52 1.8 650 140000

2496 �311�A Holes 200 1500 5.3 2.44 10 460 53000

2496 �311�A Holes 200 1500 5.3 2.4 10 450 53000

2535 100 Electrons 200 1700 4.1 3.2 2.96 2 784 220000

2385 �311�A Holes 150 2000 3 2.4 12 800 43000

2499 �311�A Holes 150 2000 3 2.4 12 800 37000

2500 �311�A Holes 150 2500 3 2.2 12 730 32000

2518 �311�A Holes 150 2500 3 2.4 12 800 35000

2386 100 Electrons 150 3000 2.2 2.9 3.07 2.4 910 118000

2386 �311�A Holes 150 3000 1.3 1.7 15.9 1310 57000

AG662 100 Electrons 100 4000 0.88 1.5 1.71 3.3 1700 120000
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standard low-frequency �6–13 Hz� lock-in technique. We
found I-V nonlinearity for wide p-type parabolic well in the
quantum Hall-effect regime for current I�10−9 A. We sus-
pect that this effect is not due to the heating but rather indi-
cates the beginning of the CDW instability �see discussions�.
Therefore, we applied the current between 10−7 and 10−9 A
in order to minimize the heating and nonlinear effects.

In Fig. 2, we show plots of longitudinal Rxx resistance of
1500 Å wide electronic parabolic well versus perpendicular
magnetic field for three different temperatures. We can see
that the electrons demonstrate conventional quantum Hall-
effect �QHE� behavior: wide plateaus in the Hall resistance
accompanied by deep minima in Rxx. Note that the Hall re-
sistance is linear with magnetic field and that the center of
the Hall plateaus coincides with the center of the minima in
Rxx. Several electronic samples with the parameters indicated
in Table I from different wafers with different widths were
studied, and all have demonstrated conventional QHE and
linear Hall resistance. Figure 3 shows typical traces of Rxx
and Rxy for a 4000 Å wide electronic parabolic well as a
function of magnetic field for different temperatures. This
sample was illuminated in order to achieve a wider width of
the electronic slab and a filling fraction f �1. We observe
that the Hall resistance varies linearly with magnetic field at
low B, but that at higher field, Rxy deviates from linearity,
and that its slope increases. Note that the extrapolation of the
low B Hall resistance intersects the Hall plateaus at magnetic
field higher than the centers of the plateaus. Such anomalous
behavior is observed only at low temperature, at T�2 K, the
linearity of Rxy is recovered and compatible with the ordinary
Hall effect.

Parabolic wells with holes, in general, demonstrated simi-
lar behavior. However, an enhanced Hall slope is observed in

samples with smaller effective width. Figure 4 illustrates the
dependence of the Hall resistance on the sample width W for
p-type PQW. We see that the Hall resistance for W
=1500 Å wide parabolic well clearly deviates at B�4 T
from the former low field linear dependence. Figures 5 and 6
show the very pronounced high-field excess Hall resistance
in 2000 and 2500 Å parabolic wells. Note that the Hall slope
is changed abruptly at a critical magnetic field Bc�3.2 T and
cannot be accounted for by a simple gradual magnetic
freeze-out picture. Generally, such behavior may be de-
scribed by

Rxy = A�B − B0�/eps, �2�

where B0 and A are temperature-dependent coefficients. The
Hall slope RH=�Rxy /�B gradually increases when tempera-
ture decreases and becomes two times larger at T=50 mK
than at low field and high temperatures. Figure 7 shows the
longitudinal and Hall resistances close to the critical mag-
netic field. We see that above the critical field, the Hall re-
sistance increases when the temperature decreases, which
corresponds to the metal-insulator transition behavior.

Now, we analyze the correlation between the Hall resis-
tance and longitudinal transport. In the quantum Hall-effect
regime, the minima in Rxx coincide with the center of the
Hall plateaus, which have the value h /�e2, where � is the
Landau filling factor. From Figs. 3–6, we see that the excess
Hall resistance is observed to occur for small Landau filling
factors ��3, which makes it difficult to identify the corre-
sponding minima in Rxx. Note that for holes, the quantum

246

FIG. 2. �Color online� �a� Magnetoresistance and �b� Hall resis-
tance of a 1500 Å PQW with electrons as a function of the perpen-
dicular magnetic field for different temperatures T �mK�: 850 �red�,
650 �blue�, 50 �black�. The dashed line �---� corresponds to a linear
extrapolation of low-field Hall resistance.

246

FIG. 3. �Color online� �a� Magnetoresistance and �b� Hall resis-
tance of a 4000 Å PQW with electrons as a function of the perpen-
dicular magnetic field for different temperatures T �mK�: 950 �red�,
450 �blue�, 50 �black�. The dashed line �---� corresponds to a linear
extrapolation of low-field Hall resistance. Sample was illuminated
by red-light-emitting diode.
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Hall features are not observed: Rxx shows a maximum in-
stead of a minimum, and the plateau in Rxy is absent. We
suggest that the �=1 minimum is suppressed because the
spin gap �or intersubband energy separation� is too small.
The g factor in p-type GaAs system is unknown and, in
principle, can be small, in which case the gap will be hardly
resolved due to the low mobility. A second scenario which
may be suggested is the formation near �=1 of the isotropic-
spin- or charge-density state proposed by Brey4 for a suffi-
ciently thick electron slab, Wh�Wc. Brey considered the
static linear response of the thick electron layer in the pres-
ence of the interactions and high magnetic fields and found
that it has a soft mode which can be interpreted as a begin-
ning of a CDW instability. Below, we will focus mostly on
the Hall-effect behavior, and we believe that the interpreta-
tion of the longitudinal resistance is not necessary for the
explanation of the excess Hall resistance.

In Fig. 6, we see the deep minima in Rxx at B=12 T and
the corresponding plateau in the enhanced Rxy =3h /e2, which
can be attributed to the fractional Hall effect at �=1/3. How-
ever, from an extrapolation of the low-field Hall resistance, a
1 /3 fraction is expected for a much higher field B�25 T. It
is worth noting that the observation of the fractional Hall
effect in low mobility sample �
�70	103 cm2/V s at T
=50 mK� is not very surprising, and similar observations
have been reported in p-type AlxGa1−xAs heterostructures11

and AlAs quantum well12 for electrons with a large effective
mass.

We attribute the enhanced RH to a varying carrier density
effect. Since the shape of the wave function in the z direction

and potential profile are very sensitive to the electron-
electron interaction and may be tuned by strong magnetic
fields, the result is the redistribution of the charge between
the well and dopant layers. The evolution of the shape of the
electron-gas slab and the self-consistent potential of a para-
bolic quantum well with magnetic field have been studied in
Refs. 7 and 13. Below, we reproduce these results and cal-
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FIG. 4. �a� Magnetoresistance and Hall resistance of a 1000 Å
PQW with holes as a function of the perpendicular magnetic field,
T=50 mK. The dashed line corresponds to a linear extrapolation of
the low-field Hall resistance. �b� Magnetoresistance and �c� Hall
resistance of a 1500 Å PQW with holes versus B for two tempera-
tures T �mK�: 950 �-·-, dash-dotted line� and 50 �—, solid line�. The
dashed line �---� corresponds to a linear extrapolation of low-field
Hall resistance.

1234

FIG. 5. �Color online� �a� Magnetoresistance and �b� Hall resis-
tance of a 2000 Å PQW with holes versus B for different tempera-
tures T �mK�: 1000 �black�, 950 �red�, 700 �green�, 360 �blue�, 200
�cyan�, 150 �magenta�, and 50 �purple�. The dashed line �---� corre-
sponds to a linear extrapolation of the low-field Hall resistance. Rxx

in logarithmic scale.
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FIG. 6. �Color online� �a� Magnetoresistance and �b� Hall resis-
tance of a 2500 Å PQW with holes versus B for different tempera-
tures T �mK�: 1000 �black�, 950 �red�, 700 �green�, 360 �blue�, 200
�cyan�, 150 �magenta�, and 50 �purple�. The dashed line �---� corre-
sponds to a linear extrapolation of the low-field Hall resistance. Rxx

in logarithmic scale.
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culate the sheet density in parabolic wells in zero and strong
magnetic fields.

III. WIDE PARABOLIC WELL IN ZERO
MAGNETIC FIELD: SELF-CONSISTENT

AND ANALYTICAL CALCULATIONS

We begin with the calculation of the ground-state electron
density and the self-consistent potential for an ideal elec-
tronic parabolic well in the Hartree approximation for well
parameters which are close to the experimental samples. We
studied PQW with widths between 1000 and 4000 Å with a
depth �1=661�1.55x+0.37x2� meV for the parabolic poten-
tial and an additional spacer barrier �2=661�1.55�y−x�
+0.37�y−x�2� meV. Carriers into the well are supplied by
dopant layers located at both sides of the well. These are
located after the spacer layer �Ls� of undoped AlxGa1−xAs
�Fig. 1�. Dopant layers have 2.5	10−12 cm−2 of surface den-
sity and a thickness of 50 Å. This width for the dopant layer
was used because, as was shown by Schubert et al.,14 for the
growth conditions of our samples, the �-doped Si layer dif-
fuses to a width of 50 Å and we are considering modulation
doping in our calculations.

Figure 1�b� shows the results of such a calculation for a
PQW with W=1000 Å, sheet density of ns=5.45
	1011 cm−2, and spacer layer of Ls=100 Å. In our approxi-
mation, we suppose that electrons from �-Si layer are trans-
ferred into the well until the system achieves thermodynami-
cal equilibrium. In this case, a charge balance equation15 can
be written:

Vp = VH� + Ec + EF + Ed + Vh + Vs, �3�

where Vp=�1+�2 is the sum of the height of the parabolic
potential �1 and the spacer barrier �2, VH is the band bend-

ing energy resulting from electron-electron interactions, Ec is
the highest occupied energy level, Ed is the activation energy
of donor impurities, Vs is the depletion energy of the ionized
charge, and Vh is the potential of the donor layer.

Analytical expression for the electron density can be ob-
tained from first-order perturbation theory, if we assume that
only the two lowest subbands are populated.

When two bands are occupied with total density ns=n0
+n1, where n0 and n1 are the densities of the first and the
second subband, the Poisson equation is given by

d2V�

dz2 =
e2


n�z� =

e2


�n0�0�z� + n1�1�z�� , �4�

where the potential V��z� can be determined from

V��z� = −
e2ns

2
�z erf��az� +

1
�a�

�e−az2
− 1�	

−
e2n1

2
� 1

�a�
�e−az2

− 1�	 , �5�

where the erf function is the Gauss error function and a
=m*� /�. The functions �0�z� and �1�z� are the harmonic
oscillator wave functions for n=0 and n=1,

�0�z� = � a

�
	1/4

e−az2/2,

�1�z� = � a

�
	1/4

�2aze−az2/2. �6�

The eigenenergies of the Hamiltonian H+V�z� were calcu-
lated in the basis of two bound states. It can be written as

�E0 + �E0 V01

V01 E1 + �E1
	 , �7�

where

�En = 
�n�V��n� ,

Vnj = Vjn = 
�n�V�� j� . �8�

The nondiagonal elements Vnj =Vjn are zero since �n and � j
have different parities. We calculated the confinement ener-
gies in the first and second subbands, and finally from the
charge balance equation �Eq. �3��, we determined the density
of the electrons in the parabolic well, assuming n1�n0:

FIG. 7. �Color online� The longitudinal �black� and Hall �red�
resistances as a function of magnetic field for different temperatures
T �0.1, 0.2, 0.3, 0.4, 0.6, 0.8, and 1.0 K�. Arrow shows the critical
magnetic field, above which the Hall resistance becomes tempera-
ture dependent.
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ns =
Vp − �� − Ed

e2


W erf��aW

2
�

4
−

1

2�a�
+

5 erf��2aW

2
�

2�2a�
−

erf��2aW

2
�

�a�
+

W

�
e−aW2/4�e−aW2/4 − 1� +

Ls

21
� +

��2

2m*

. �9�

As we mentioned above, we performed self-consistent
calculations of the energy spectrum of the electronic states in
the parabolic well. We do not consider the effective-mass
variation across the well resulting from the variation of the
Al concentration. Including these effects into a more com-
plete theory16 may improve quantitative agreement with ex-
periments. The wave functions �i

n and energies Ei
n can be

found from the Schrödinger equation

−
�2

2m*

d2

dz2�i
n�z� + �V0�z� + VH�z� + VXC�z���i

n�z� = Ei
n�i

n�z� .

�10�

In this equation, VH is the Hartree potential given by

VH = −
2�e2

�sc
�

−�

�

dz�n�z���z − z�� , �11�

and exchange-correlation potential

VXC = − 0.985
e2

�sc
n�z�1/3

	�1 +
0.022 85

aB
*n�z�1/3 ln�1 + 33.852aB

*n�z�1/3�� . �12�

In these expressions, n�z� is the electron density, �sc is the
dielectric constant, and aB

* =�sc�
2 /m*e2 is the effective Bohr

radius.
We also used a self-consistent calculation to find the

charge transferred into the parabolic quantum wells. In this
approximations, we again suppose that electrons from �-Si
layer are transferred into the well until the system achieves
thermodynamical equilibrium �a uniform Fermi level�, and
as for the analytical approximation, we use the balance equa-
tion �Eq. �3��. In Fig. 8, we compare the results of the self-
consistent calculations, the analytical approximation, and the
experimental results for different electronic parabolic wells.
As expected, the self-consistent calculations show good
agreement with experimental results.

We do not attempt to calculate the energy spectrum and
the density variation in p-type wide parabolic quantum well
because of the complexity of such calculations.17,18 In the
present work, we use a simple model to explain the Hall
coefficient behavior in p-type parabolic wells. Figure 9
shows the experimental data and analytical approximations
for two subbands. Indeed, as expected, the analytical formula
underestimates the value of ns, as for electronic PQW. How-
ever, it explains qualitatively the decrease of the hole density
with the well width. Note that we modified Eq. �9� for p-type
PQW, because the lowest subband is occupied by the heavy
holes and the second is occupied by the light holes.17,18

FIG. 8. �a� Variation of electronic density ns in PQWs of width
1000 Å with spacer Ls. The solid circles are the experimental data,
solid line �—� represent the self-consistent calculations, dashed line
�…� is the analytical approximation for two subbands. �b� Variation
of electronic density ns in a PQWs with width for Ls=200 Å. The
solid circles are the experimental data, solid line �—� represents the
self-consistent calculations, and dashed line �…� is the analytical
approximation for two subbands.

1000 2000 3000
1
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4
spacer 200
spacer 150

p
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1
1
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-2
)
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FIG. 9. �Color online� Variation of hole density ps in PQWs with
width for different spacer layers. The solid circles are the experi-
mental data, and solid line and dashes represent the simple analyti-
cal approximation for two subbands.
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To conclude this part, we may emphasize here that the
charge balance equation and the knowledge of the energy
spectrum allow us to calculate the density of the charge car-
riers in the wide PQW with different widths and spacers in
zero magnetic field. We now calculate the density in strong
magnetic fields.

IV. WIDE PARABOLIC WELL IN MAGNETIC FIELD:
SELF-CONSISTENT CALCULATION

We choose the magnetic field in the z direction and use
the gauge A= �0,Bx ,0�. We assume that the XY-plane part of
the wave function and the energy are the same as in the case
of independent electrons:

�n,i,ky
�r� =

1
�L

eikyy�n�x − kylB
2��i

n�z� , �13�

n,i = �n +
1

2
���c + Ei

n. �14�

In Eq. �13�, L is the sample dimension, �n are the eigen-
states of the one-dimensional harmonic oscillator, �c

=eB /m*c is the cyclotron frequency, and lB=��c /eB is the
magnetic length. The wave functions �i

n and energies Ei
n can

be found from the Schrödinger equation in the magnetic
field. The electron-density profile in the well is given by

n�z� =
1

2�lB
2 �

n,i
���i

n�z��2, �15�

where � is the Landau filling factor of the state.
Figure 10 shows the electron-density profile and self-

consistent potential for 4000 Å wide electronic parabolic
well for zero magnetic field and at B=10 T. Note that the
potential is not flat: it has two minima near the edges of the
electronic slab and a maximum at the center of the well. We
see that the magnetic field strongly modifies potential profile
and density distribution, that the width of the electronic slab
shrinks with field, and that the height of the central maxi-
mum of the self-consistent potential increases with field.
These results reproduce previously reported shrinking of the
electronic slabs in the wide parabolic wells in strong mag-

netic fields.7,13 Hembree et al. attribute such modification of
the electronic potential to the Hartree term in strong mag-
netic fields, which becomes equally important as the bare
parabolic potential. We can also interpret such behavior as a
precursor of the formation of the intersubband induced iso-
tropic CDW state proposed by Brey4 for a sufficiently thick
electron slab Wh�Wc. For example, in electronic PQW with
4000 Å geometrical width W and characteristic energy ��
=5.7 meV, a transition should occur at critical thickness
Wc�700 Å, which corresponds to the critical electron sheet
density ns

c=2.1	1011 cm−2. Moreover, we cannot exclude
the formation of a CDW state in p-type PQW. However, this
effect may be destroyed by impurity scattering. Therefore,
we found it more reasonable to explain the enhanced Hall
slope in both n- and p-type PQWs by shrinking of the charge
slab in the strong perpendicular magnetic field, which does
not depend on impurity scattering effects.

The effective decrease of the width of the electron slab
may lead to the increase of the distance between the elec-
trons and impurity layer, which supplies the carriers into the
well, and, consequently, leads to a decrease of the density in
the well. We used self-consistent calculations of the energy
spectrum and the balance equation in order to obtain the
variation of the electronic density in wide PQW with mag-
netic field.

Figure 11 shows the density as a function of magnetic
field for 4000 and 1000 Å wide electronic parabolic wells.
We see a decrease of the density with B of up to 9% in the
wide parabolic well and small ��1% � oscillations of the
density in the narrow well. Note that in the 4000 Å wide
well, the density is almost constant at B�4T, which agrees
with our observation. This corresponds to magnetic field for
which only the two last Landau levels are occupied.

It is extremely difficult to calculate the energy spectrum
for p-type PQW in the strong magnetic field. In addition, the
rs factor for holes is very large, usually �10, as we can see
in Table I. Note that the validity of the Hartree approxima-
tion may be limited to rs�1 and that for larger rs, the valid-
ity is no longer clear. Nevertheless, we believe that the usual
Hartree approximation captures all essential physics and that
for holes, the density variation effect can be even stronger
than for electrons.

Our simple model does not explain the temperature ef-
fects, which are clearly seen in Figs. 5–7. Our calculations
are performed at zero temperature, and it seems very likely
that the finite temperature smears out interactions effects,
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and a normal Hall slope is recovered at 1–2 K. We did not
observe the intermediary stage of the ordinary Hall slope in
the quantum regime. Temperature effects may smear out
gradual change in the slope of the Hall effect with magnetic
field.

Finally, we consider other phenomena which may explain
the enhanced Hall factor in the two-dimensional systems.
First, the presence of the carriers with different mobilities
and densities may cause the changes in the Hall coefficient.
However, this effect should lead to the ordinary Hall coeffi-
cient in strong magnetic fields and enhanced Hall coefficient
at low B,19 which is exactly the opposite of what we ob-
served in experiments �see Fig. 5–7�. Second, the
temperature-induced Hall slope change has been predicted
by the theory of the quantum corrections to the Hall resistiv-
ity which have recently been re-examined and reformulated
in terms of elastic scattering of electrons by Friedel
oscillations.20 However, this theory cannot explain why the
Hall slope starts to increase above a critical magnetic field,
which is shown in Fig. 5–7. Note also that the value of the
Hall resistance corrections, predicted by this theory,20 is
much smaller than we observed. Finally, we also tried to
explain our observation by spin-dependent transport in wide
parabolic wells. Recently, we reported the change in the Hall
slope in a wide electronic PQW in a quasiparallel magnetic
field.21 We attributed the enhanced Hall slope in the presence
of the parallel magnetic field to the suppression of the mo-
tion in the z direction in quasi-three-dimensional system. In
AlGaAs PQW, the g factor is varied strongly along the z
direction, and such motion requires a spin flip, which is sup-
pressed by low temperature.

In spite of the similarity of the experimental curves, we
should emphasize many differences between these two ob-
servations, which indicate the different physical origin of
these phenomena. For example, the effect in perpendicular
magnetic field is seen at lower temperatures �50 mK�T
�2 K�. In addition, and maybe more important, we do not
observe the enhanced Hall slope in quasiparallel magnetic

field for p-type wide PQW. This last observation is crucial
for separation of these two effects. For example, naively, we
can try to explain the enhanced Hall slope in parallel mag-
netic fields by redistribution of the charge due to Hartree
term for quasi-three-dimensional electrons, as we do in per-
pendicular magnetic field. However, we would expect in that
case that such a three-dimensional electron slab would be
wider in the presence of a parallel magnetic field than a 2D
slab in zero field because of the Lorentz force, which pushes
electrons to the border of the well. Therefore, the density
should increase in 3D electron system, which disagrees with
our results. In p-type PQW, a spin valve effect is not ob-
served, since the g factor in these system does not change the
sign, as in electronic PQW. It agrees with our previous inter-
pretation reported in Ref. 21.

V. CONCLUSION

We describe the measurements of the Hall coefficient in
wide n- and p-type PQWs in perpendicular magnetic fields.
We observe a strongly enhanced slope of the Hall resistance,
especially in hole systems. We attribute this effect to the
redistribution of the charge between the well and donor lay-
ers, since the exchange-correlation terms and, consequently,
potential shape are sensitive to the magnetic field. A varia-
tion of the electronic slab width in wide wells has been pre-
dicted in several papers.7,13 However, until now, this effect
had not been observed experimentally. Our observation dem-
onstrate the importance of many-body effects in strong mag-
netic fields, and, in principle, the effect may be considered as
a precursor of the CDW instability, which has also been pre-
dicted in a wide PQW.
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